Generation X

System Overview

David Everett

July 27, 2000

System Overview

- ◆ Overview
- **♦ Driving Requirements and Assumptions**
- ♦ Options
- **♦** Selected Configuration and Rationale
- ◆ Technologies Required
- ♦ Mass and Power Summary
- ◆ Requirements Verification
- ◆ Additional Trades
- ◆ Risk Assessment
- ♦ Issues and Concerns

System Overview, Supporting Data

♦ Mirror Sizing

"MirrorConfigurations.xls"

♦ Mass and Power information

"GenX_MassPowerSummary.xls"

◆ Useful Web sites

- Access to Space at http://accesstospace.gsfc.nasa.gov/ provides launch vehicle performance information and other useful design data
- Information related to Wiley Larson's Space Mission Analysis and Design (SMAD) book http://smadcd.net/

System Overview

- ♦ Four 25 m² X-ray telescopes, each with 100 m focal length
- ♦ Launch in 2015
- ♦ Operate in L2 orbit for thermal stability

System Driving Requirements & Assumptions

- ◆ Thermal gradients over the entire mirror assembly must be small
- ♦ 25 m² of mirror area
- ◆ Pointing anywhere within ±15° of plane perpendicular to sun line
- ♦ Slew between any targets in a reasonable amount of time
 - Long dwell-time on targets (days)
 - Hours to slew between targets is OK
- ◆ Arc-second pointing
- ♦ Focal planes located 100 m from optics
- ♦ Focal planes operating at 100 mK
- **♦ L2 orbit (driven by thermal considerations)**

System Driving Requirements & Assumptions

♦ Instrument support

Mass: 5100 kg (5000 kg optics plus 50 kg optics on a boom)

• Power: 200 W plus possibly substantial heaters

• Data Rate: 10 kbps

 Deployed focal planes are in a cryostat 100 m away from optics, boom is approximately 50 kg

System Options Considered

◆ Direct launch to L2

- Deployed rectangles
 - 12 segments
 - 17.7 m total diameter
 - Very difficult thermal design
 - 4 segments
 - 9.3 m total diameter
 - Simple mechanical design
 - Gaps are a problem for the thermal design
- Deployed segments
 - Similar to Next Generation Space Telescope (NGST)
 - Only 16 m² optic area available
 - Gaps are a problem for the thermal design
- Deployed circles

- 2 circles, 4 m in diameter
- Much easier for thermal design

System Options Considered

◆ Assembly near space station in Low-Earth Orbit (LEO)

- 5.7 m cylinder
- 1 m central spacecraft bus
- Align optics, check boom deployment in orbit
- Requires substantial propulsion to L2 (~3200 m/s delta V)

- Conventional solid/hydrazine combination
 - Much greater "wet" mass
- Magneto-plasma dynamic system

- Provides higher-thrust mode for 1 day to clear radiation belts
- Higher thrust demands 10 kW of electric power
- Lower thrust mode demands less power, provides greater efficiency
- Longer transit time to L2
- **♦ Spinning mirror with despun detector boom**
 - Simplifies thermal design
 - Complicates ACS

System Selected Configuration & Rationale

◆ Direct Launch Spacecraft

- Orbit: L2, 30° halo Lissajous orbit (requires less delta V than a smaller orbit)
- Launch mass: 6400 kg including 300 kg of hydrazine
- Orbit average power: 2500 W
- Launch vehicle: Delta IV Heavy (7526 kg capability)

◆ LEO Assembled Spacecraft

- Orbit: L2, 30° halo Lissajous orbit
- Launch mass: 10,000 kg including 2800 kg of propellant (assumes specific impulse of 1000 s)
- Orbit average power: 2500 W, 10 kW peak leaving LEO
- Launch vehicle: Delta IV Heavy (23,000 kg capability--over 50% margin!)

System Selected Configuration & Rationale

♦ LEO Assembly Scenario

- Mirror segments launched to space station orbit
- Mirror assembled and spacecraft bus attached
- Boom is deployed, and instrument focus is adjusted and verified
- Boom is retracted for transit
- High-thrust electric propulsion (~100 N) gets spacecraft clear of the radiation belts in < 1 day using 10 kW from primary battery
- Lower-thrust, higher efficiency mode of the propulsion system used for the rest of the transit to L2
- Possibility of deploying detectors during transit, but the sun attitude might not always be favorable--additional analysis required to pursue this option.

System Technologies Required

- ♦ X-ray mirror system
 - Allow as much thermal gradient as possible
 - Reduce mass as much as possible

LEO Assembly Option

- ♦ In-space assembly
- ♦ High specific impulse (>1000 s), higher thrust (>100 N) propulsion system

Direct Insertion Option

- ◆ Deployment mechanisms
- ◆ Adjustment mechanisms

System Mass Summary

Spacecraft Bus Mass (kg)

Conventional		High Isp	Direct	
LEC	to L2	to L2	Insert	
ACS	106	106	106	
C&DH	10	10	10	
Power electronics	30	30	30	
Battery	33	33	33	
Solar array	68	68	68	
Primary Battery	0	600	0	
Thermal hardware	20	20	20	
RF communications	43	43	43	
Balance weight	0	0	0	
Bus harness	15	15	15	
Bus Structure	40	100	40	
Mechanisms	10	10	10	
Sep system, S/C	35	35	35	
Bus Total	410	1070	410	

System Mass Summary

i i opendire Sizing	ventional O to L2	High Isp to L2	Direct Insert
Required delta V (m/s)	3300	3300	100
Isp (s)	290	1000	220
Mass fraction of propellant	219%	40%	5%
Dry mass (kg)	6858	6978	6068
Propellant (kg)	15044	2794	288
Mass Summary (kg) Conv	ventional	High Isp	Direct
	O to L2	to L2	Insert
Payload Total	5608	5608	5608
Bus Total	410	1070	410
Dry Propulsion Total	840	300	50
Dry Mass	6858	6978	6068
Propellant	15044	2794	288
Mass to Orbit	21902	9772	6356
Launch Vehicle Capability	23000	23000	<u>7526</u>
Margin (kg)	1098	13228	1170
Wet Mass Margin %	5%	58%	16%
Dry Mass Margin %	1%	41%	15%

System Power Summary

Mission Power (W)

Payload Payload heaters	Electric Prop 0 0	Operations 200 2000
Payload Total	0	2200
ACS C&DH Power electronics Propulsion Heaters RF Comm	73 20 70 2000 10 10	73 20 70 20 10
Harness losses Bus Total	25 2208	25 228
Spacecraft total	2208	2428

System Requirements Verification

- ♦ Standard functional and environmental tests per GEVS
- ♦ On-orbit assembly provides the option to completely verify instrument operation prior to L2 departure

System Additional Trades to Consider

- ♦ Hybrid combination of conventional and electric propulsion to balance launch mass and time to L2
- ◆ Deployment of detector boom during transit to L2
 - Earlier start of data collection
 - Possibility of unfavorable sun angles at times
- ◆ Futher options and definition of detector boom
 - Free-flying option
 - Methods to counter-act solar torque
 - Power
 - Data communications
- ◆ Network four spacecraft together
 - Requires links between spacecraft
 - Reduce the number of links back to Earth
 - Provide remote processing of data
 - Ease operational complexity

System Risk Assessment

- ♦ Minimizing mirror gradients is potentially difficult and impacts the entire architecture of the spacecraft
- ◆ Detector boom has many issues besides thermal, all appear solvable
 - Power
 - Data communications
 - Solar pressure

System Issues and Concerns

◆ LEO assembly has some interesting advantages, but the propulsion from LEO to L2 is a big issue. Future advances in propulsion with high specific impulse and higher thrust may make this a very economical approach. Current technology can deliver high specific impulse, but the transit time is too long (years).